
CHROM. 4475

Fractionation of poly(methylene-2-hydroxybenzoic acid) by preparative layer chromatography

In our work on biologically active synthetic polymers, poly(methylene-2hydroxybenzoic acid) [1] which showed a reasonable anti-inflammatory activity on localized edema caused by bradykinin¹ has been examined.

To investigate whether such a property should be attributed to the polymer as a whole or to some fraction of it, we developed a fractionation procedure using preparative layer chromatography. Satisfactory results were obtained using Silica Gel H as sorbent and a mixture of benzene-acetic acid-water (2:2:1) as eluent. Each fraction was removed from the chromatoplate together with the sorbent and eluted using a column. The molecular and the equivalent weights were determined for each fraction.

Experimental

Materials and methods. A Shandon equipment for preparative layer chromatography was used. Chromatoplates (100 \times 20 cm) were prepared by the method described by STAHL², with Silica Gel H (Merck) as sorbent. A 750- μ layer was used on all plates which were then placed for 3 h in the pre-drying rack, heated at 110° for 1 h and stored in a desiccator. The chromatographic tank was lined with filter paper and equilibrated for 4–5 h before use.

Benzene-acetic acid-water (2:2:1) was employed as the solvent system. The solvents were mixed in a separatory funnel and allowed to equilibrate for 30-40 min. The benzene phase was placed at the bottom of the chromatographic tank, and the aqueous phase was placed in a beaker inside the tank.

TABLE I

CHARACTERIZATION OF POLY(METHYLENE-2-HYDROXYBENZOIC ACID) (PMSA) FRACTIONS

Fraction	R _F value (× 100)	Equiv. wl.	Mol. wt.
I	0- 4	158.8	1100
2	5-18	160.9	800
3	19-27	165.3	550
4 5	28–38 39–46	173.8 143.8	450 288#
PMSA		163.9	650
Salicylic acid	78	138.2	138

^a This is the molecular weight of 3,3'-dicarboxy-4,4'-dioxydiphenylmethane.

J. Chromatog., 46 (1970) 132-133

About 0.3 g of polymer previously solubilized in 2 ml of an acetone-water (10;1)mixture was deposited along the length of each plate. The chromatoplates were developed in the stainless-steel preparative chromatotank which held one chromatoplate rack with five plates. In this way it was possible to fractionate 1.5 g of polymer at the same time. The plates were developed for 14-16 cm (ca. 45 min) by the ascending method.

After complete drying, five fractions, with R_F values as reported in Table I. were observed as bands on the plate by means of UV light at 366 m μ (Engelhard Hanovia Model 16).

Extraction and characterization of fractions. The fractions were removed from the plates and transferred into glass tubes $(2 \times 30 \text{ cm})$ drawn at one end. The fractions were dissolved in ethanol; by adding dilute HCl a precipitate was obtained. After centrifugation and repeated washing with water, the fractions were dried under vacuum at 40°; each fraction was collected as a white powder.

The equivalent weight was determined by a potentiometric titration³ of the carboxylic group of each monomeric unit with potassium methylate as titrant and pyridine-benzene-methanol (2:2:1) as solvent^{*}.

Table I shows the equivalent weights of the fractions and related molecular weights determined in methanol by an isopiestic method (Hitachi Perkin-Elmer, Model 115).

Discussion

The results summarized in Table I show that the polymer fractionation is a function of the molecular weight of each fraction. The procedure developed allows one to obtain reasonable quantities of each fraction in a relatively short time. By using a set of five plates, it is possible to fractionate 1.5 g of polymer in about 2 h. This simple technique can also be satisfactorily used for the molecular weight fractionation of other similar polymers.

Istituto di Chimica Farmaceutica e Tossicologica,	GIUSEPPE CIAMPA
Università di Napoli, Naples (Italy)	Ciro Grieco
• • • • •	Carlo Silipo

1 G. CIAMPA AND E. MIELE, Rend. Accad. Naz. XL, 16 (1966) 247.

- 2 E. STAHL (Editor), Thin-layer chromatography, Springer, Berlin and New York, 1962.
- 3 G. CIAMPA, C. GRIECO, F. MANNA, C. SILIPO AND A. VITTORIA, Chim. Ind., 51 (1969) 595. 4 G. CIAMPA, C. GRIECO, C. SILIPO AND M. PENNAROLA, Rend. Accad. Sci. Fis. Mat., IV, 30 (1969) 98.

Received October 16th, 1969

J. Chromatog., 46 (1970) 132-133

^{*} The higher values of the equivalent weight as compared with the equivalent weights calculated from formula I can be explained by the presence of hydroxymethylenic groups, as confirmed by NMR⁴.